A Stochastic Gradient Descent Approach for Stochastic Optimal Control
نویسندگان
چکیده
منابع مشابه
Variational Stochastic Gradient Descent
In Bayesian approach to probabilistic modeling of data we select a model for probabilities of data that depends on a continuous vector of parameters. For a given data set Bayesian theorem gives a probability distribution of the model parameters. Then the inference of outcomes and probabilities of new data could be found by averaging over the parameter distribution of the model, which is an intr...
متن کاملByzantine Stochastic Gradient Descent
This paper studies the problem of distributed stochastic optimization in an adversarial setting where, out of the m machines which allegedly compute stochastic gradients every iteration, an α-fraction are Byzantine, and can behave arbitrarily and adversarially. Our main result is a variant of stochastic gradient descent (SGD) which finds ε-approximate minimizers of convex functions in T = Õ ( 1...
متن کاملParallelized Stochastic Gradient Descent
With the increase in available data parallel machine learning has become an in-creasingly pressing problem. In this paper we present the first parallel stochasticgradient descent algorithm including a detailed analysis and experimental evi-dence. Unlike prior work on parallel optimization algorithms [5, 7] our variantcomes with parallel acceleration guarantees and it poses n...
متن کاملPreconditioned Stochastic Gradient Descent
Stochastic gradient descent (SGD) still is the workhorse for many practical problems. However, it converges slow, and can be difficult to tune. It is possible to precondition SGD to accelerate its convergence remarkably. But many attempts in this direction either aim at solving specialized problems, or result in significantly more complicated methods than SGD. This paper proposes a new method t...
متن کاملStochastic Gradient Descent Tricks
Chapter 1 strongly advocates the stochastic back-propagation method to train neural networks. This is in fact an instance of a more general technique called stochastic gradient descent (SGD). This chapter provides background material, explains why SGD is a good learning algorithm when the training set is large, and provides useful recommendations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: East Asian Journal on Applied Mathematics
سال: 2020
ISSN: 2079-7362,2079-7370
DOI: 10.4208/eajam.190420.200420